Меню

Почему поверхность вала контактирующую с манжетными уплотнениями подвергают закалке

Большая Энциклопедия Нефти и Газа

Рабочая поверхность — шейка — вал

Рабочие поверхности шеек вала или вкладышей были обильно смазаны ( политы из масленки) чистым маслом, заливаемым в картер двигателя. [1]

Рабочие поверхности шеек вала и поверхностей кулачков подвергают термической обработке ТВЧ с глубиной закалки 2 — 5 мм или цементации на глубину 1 5 — 2 2 мм. [2]

Рабочие поверхности шейки вала , а также галтели должны быть шлифованы до 7-го класса шероховатости поверхности. [4]

Для надежной работы манжетных уплотнений рабочая поверхность шейки вала , контактирующая с манжетой, должна иметь чистоту обработки не ниже V8 для валов с окружной скоростью менее 4 м / сек и V9 для валов с окружной скоростью выше 4 м / сек. Ниже приведены принятые на ряде предприятий классы чистоты поверхности вала в зависимости от окружной скорости вала. [5]

При наружном осмотре коленчатого вала определяют состояние рабочей поверхности шеек вала , а также выявляют тщательным осмотром с помощью лупы, нет ли трещин, изломов и других возможных повреждений. [6]

При наружном осмотре коленчатого вала определяют состояние рабочей поверхности шеек вала , а также выявляют тщательным осмотром с помощью лупы, нет ли трещин, изломов и других возможных повреждений на его поверхностях. [8]

При наружном осмотре коленчатого вала определяют состояние рабочей поверхности шеек вала , а. [10]

При наружном осмотре коленчатого вала определяют состояние рабочей поверхности шеек вала , а также выявляют при помощи лупы, нет ли трещин, изломов и других возможных повреждений на его поверхностях. [12]

При наружном осмотре коленчатого вала определяют состояние рабочей поверхности шеек вала , а также выявляют тщательным осмотром с помощью лупы, нет ли трещин, изломов и других возможных повреждений. [13]

При наружном осмотре коленчатого вала определяют состояние рабочей поверхности шеек вала , а. [15]

Источник

Защита курсовой по Деталям машин

1. Какие факторы определяют величины назначенных предельных отклонений от соосности валов?
Вид сборки (с прокладками/ без прокладок), высота расположения оси редуктора или электродвигателя относительно общей плиты (рамы).
2. Каково назначение чертежа сборочной единицы (технического проекта узла) и какие требования предъявляются к этому чертежу? Какие размеры на нем проставляют?
Сборочный чертеж предназначен для выполнения сборочных технологических операций в производственных условиях и поэтому входит в комплект рабочей документации.
Сборочный чертеж согласно ГОСТ 2.109-73 «Основные требования к чертежам» должен содержать:
— изображение сборочной единицы, дающее представление о расположении и взаимной связи составных частей, соединяемых по данному чертежу, и обеспечивающее возможность осуществления сборки и контроля сборочной единицы;
— размеры, другие параметры и требования, которые должны быть выполнены или проконтролированы по данному сборочному чертежу;
— номера позиции составных частей, входящих в изделие;
— габаритные, установочные, присоединительные и другие необходимые справочные размеры.
3. Какие параметры задавали при расчете передач редуктора с помощью компьютера?
Вращающий момент на шестерне Т1, Н*м; частота вращения шестерни n1, мин -1 ; передаточное число U; схема передачи; время работы передачи (ресурс) Lh, ч.
4. По каким критериям был выбран данный вариант расчета редуктора среди других представленных в распечатке вариантов?
— в зависимости от массовости производства (следовательно, экономических возможностей обработки колес и шестерней) выбирается твердость рабочих поверхностей зубьев;
— диаметры быстроходного и тихоходного колес должны иметь наименьшую разность для однородности смазки;
— диаметр впадин быстроходной шестерни должен быть незначительно (примерно на 10 мм) больше диаметра вала электродвигателя.
5. По каким критериям работоспособности был проведен расчет передач редуктора компьютером?
Согласно ГОСТу 21354-87 выполняют следующие расчеты:
1) Расчет на контактную прочность рабочих поверхностей зубьев:
— расчет на сопротивление усталости для предотвращения прогрессивного выкрашивания;
— расчет для предотвращения остаточных деформаций или хрупкого разрушения поверхностного слоя при действии кратковременной максимальной нагрузки.
2) Расчет зубьев на прочность при изгибе:
— расчет зубьев на сопротивление усталости при изгибе;
— расчет зубьев на предотвращение остаточных деформаций или поломки при действии кратковременной максимальной нагрузки.
6. Какие достоинства и недостатки имеет выбранный тип корпуса редуктора (с разъемом или без)?
Разъемный корпус наиболее удобен для сборки редуктора. Каждый из валов редуктора с опорами и со всеми расположенными на нем деталями можно собрать независимо от других валов и затем установить в корпус. Неразъемный корпус обладает большей жесткостью, а значит надежностью.
7. Как осуществляют смазывание передач и подшипников редуктора (коробки передач)?
Обычно подшипники смазывают тем же маслом, что и детали передач. При картерном смазывании передачи и подшипники смазываются брызгами масла от вращающихся колес и шестерней. Если подшипник погружен в масло и его необходимо защитить, используют маслозащитные шайбы (кольца).
8. Как расшифровывается обозначение степени точности зубчатого колеса?
Пример условного обозначения точности цилиндрической передачи со степенью точности 7 по всем трем нормам, с видом сопряжения зубчатых колес С и соответствием между видом сопряжения и видом допуска на боковой зазор, а также между видом сопряжения и классом отклонений межосевого расстояния:
7-С ГОСТ 1643-81
Пример условного обозначения точности цилиндрической передачи со степенью 8 по нормам кинематической точности, со степенью 7 по нормам плавности, со степенью 6 по нормам контакта зубьев, с видом сопряжения В, видом допуска на боковой зазор а и соответствием между видом сопряжения и классом отклонений межосевого расстояния:
8-7-6-Ва ГОСТ 1643-81
Пример условного обозначения точности цилиндрической передачи со степенью точности 7 по всем нормам, с видом сопряжения зубчатых колес С, видом допуска на боковой зазор а и классом отклонений межосевого расстояния V (при межосевом расстоянии передачи 450 мм, 128 мкм):
7-Ca/V-128 ГОСТ 1643-81
9. Что определяет расстояние от стенок редуктора до оси болта (винта), стягивающего крышку и основание редуктора?
Диаметр болта.
10. Что определяет высоту приливов для расположения болтов около подшипниковых гнезд?
Толщина стенки корпуса.
11. Для чего и на какой стадии изготовления ставятся штифты между частями разъемного корпуса?
При сборке редукторов во время затяжки болтов, соединяющих корпус с крышкой, возможно некоторое смещение крышки относительно корпуса, что вызовет деформирование наружных колец подшипников, имеющих малую жесткость. Кроме того, торцы приливов у подшипниковых гнезд на крышке редуктора и корпусе могут не совпасть, что повлечет перекос крышек подшипников и наружных колец самих подшипников. Следовательно, при сборке редуктора необходимо точно фиксировать положение крышки относительно корпуса штифтами.
12. Как обеспечивают герметичность между плоскостями прилегания разъемного корпуса редуктора? Каково назначение отжимных винтов в редукторе?
Поверхность стыка обрабатывают с шероховатостью не выше Rа1.6 и при монтаже редуктора смазывают герметичной пастой. Отжимные винты применяются для облегчения разъема склеившихся корпуса и крышки редуктора.
13. Как осуществляется захват собранного редуктора при транспортировке?
Для подъема и транспортировки крышки корпуса и редуктора в сборе применяют проушины, отливая их заодно с крышкой: выполненные в виде ребра с отверстием; в виде сквозного отверстия в крышке.
Для подъема и транспортировки корпусов больших размеров предусматривают крючья или проушины, которые отливают заодно с корпусом.
14. Каково назначение отдушины?
Для выравнивания давления внутри корпуса редуктора с атмосферным.
15. Как выбран уровень масла в редукторе?
Допустимые уровни погружения колес цилиндрического редуктора в масляную ванну: hM ≈ 4m … 0.25dT, но не менее 10 мм. Здесь m – модуль зацепления, dT – диаметр большего колеса.
16. Как осуществляют замену смазочного материала, его доливку и контроль уровня?
В результате длительной работы масло загрязняется и его сливают через сливное отверстие, доливку масла осуществляют через люк (смотровое окно), а контроль производят маслоуказателем.
17. Как выбирают местоположение смотрового окна в корпусе редуктора?
Смотровое окно стараются делать максимально возможным и располагают таким образом, чтобы с его помощью можно было осуществить контроль правильности зацеплений, а также внешний осмотр деталей.
18. Для чего и где необходимо устанавливать маслоотражательные кольца?
Маслоотражательные кольца и канавки на валах делают для предотвращения утечки из корпуса жидкой смазки. Эти уплотнения работают наиболее эффективно при высоких окружных скоростях и только в узлах, смазываемых жидкими маслами.
19. Какие меры для устранения самоотвинчивания крепежных деталей использованы в данной конструкции?
Гровер по ГОСТу 6402-70.
20. На какую глубину необходимо завертывать винты в чугун?
1.5d, где d – диаметр винта.
21. Какую длину имеет резьбовой конец шпильки, предназначенный для завинчивания в чугун (сталь)?
Для чугуна – 1.5d, для стали – d, где d – диаметр шпильки.
22. Как выбирают марку масла?
В зависимости температуры и окружной скорости выбирают кинематическую вязкость, мм 2 /с. Затем, в зависимости от температуры и кинематической вязкости выбирают марку масла.
23. Какие преимущества имеют косозубые передачи перед прямозубыми, шевронными?
В косозубых передачах зацепление колёс происходит более плавно, чем у прямозубых, и с меньшим шумом. Площадь контакта увеличена по сравнению с прямозубой передачей, таким образом, предельный крутящий момент также больше.
В отличие от шевронных передач, косозубые дешевле изготовить, и они не нуждаются в столь большом количестве смазки.
24. Почему опоры приводного вала конвейера устанавливают на сферических подшипниках?
Потому, что неизбежные погрешности изготовления деталей и сборки приводят к перекосу и смещению осей посадочных отверстий корпусов подшипников друг относительно друга. Кроме того, в работающей передаче под действием нагрузок деформируются металлоконструкция и вал.
25. Какой из двух подшипников приводного вала нагружен сильнее? Почему?
Фиксирующей выполняют более нагруженную опору, расположенную возле консольной нагрузки, вторую опору делают плавающей. Фиксирующая опора более нагружена из-за консольной нагрузки.
26. Для чего применяют плавающие опоры?
В связи с относительно большой длиной вала и значительными погрешностями сборки валы фиксируют от осевых перемещений в одной опоре. Наружное кольцо второго подшипника оставляют плавающим для компенсации этих погрешностей.
27. Как осуществляют смазку подшипников приводного вала?
Для подшипников приводного вала применяют консистентную смазку. Пластичная (консистентная смазка) представляет собой смазочный материал, который в зависимости от нагрузки может проявлять свойства твердого тела или жидкости. При незначительных нагрузках смазки могут сохранять свою форму, не стекая с вертикальной поверхности и тем самым, удерживаясь в негерметизированных узлах трения. При нагрузках, превышающих предел прочности пластичных смазок, они начинают деформироваться, приобретая свойства вязкой жидкости. При прекращении деформирования пластичные смазки вновь становятся твердыми.
28. Какие достоинства и недостатки имеет способ установки муфт на конические концы валов?
Установка полумуфт на цилиндрические концы валов с натягом и последующее снятие их вызывают затруднения, которые не возникают при конических концах. Затяжкой полумуфт на конические концы можно создать значительный натяг в соединении и обеспечить точное радиальное и угловое положение полумуфты относительно вала. Поэтому при больших нагрузках, работе с толчками, ударами и при реверсивной работе предпочтительно полумуфты устанавливать на конические концы валов, несмотря на несколько большую сложность их изготовления.
29. Каково назначение рабочих чертежей деталей?
Рабочий чертеж – это вид конструкторской документации, который содержит необходимые и достаточные требования для изготовления или применения изделия (детали или сборочной единицы). Он предназначен для практической реализации изделия.
30. Как понимать обозначение термической обработки детали ТВЧ h 1,2 . 1,6, HRC 40 . 45?
Закалка токами высокой частоты, глубина прокаливаемого слоя 1.2 … 1.6 мм, твердость поверхностного слоя по Роквеллу 40 … 45 HRC.
31. Почему поверхность вала, контактирующую с манжетным уплотнениями, подвергают закалке?
Чтобы при повышенных скоростях не происходил преждевременный износ вала.
32. Каков смысл записи на рабочем чертеже: «Общие допуски по ГОСТ 30893.2 – mK»?
m – класс точности «средний» общих допусков линейных размеров по 30893.1, К – класс точности общих допусков формы и расположения по ГОСТ 30893.2.
33. Какие способы получения заготовки зубчатых колес вам известны и из каких соображений выбирают тот или иной способ?
Заготовки для зубчатых колес в мелкосерийном производстве изготавливают из проката или свободной ковкой. В крупносерийном и массовом производстве — штамповкой на молотах, прессах и горизонтально-ковочных машинах (ГКМ). Металл перед ковкой и штамповкой нагревают до температуры 1200-1300 градусов. Способ выбирают из экономических соображений.
34. Как понимать обозначение шероховатости поверхности VRa6.3?
V означает, что конструктор не устанавливает вид обработки поверхности; Ra 6.3 – среднее арифметическое отклонение профиля, мкм (Rz – высота неровностей профиля, мкм);

Источник

Уплотнения валов

Наиболее обширная область применения уплотнений в общем машиностроении — герметизация входных и выходных валов машин. Уплотнения с одной стороны предупреждают утечку масла из корпуса машины, с другой — защищают внутренние полости от внешних воздействий (проникновения пыли, грязи и влаги извне). Особенно ответственную роль играют уплотнения в машинах и агрегатах с полостями, содержащими химически активные вещества или пищевые продукты.

Другая область применения уплотнений — герметизация полостей в машинах, содержащих газы и жидкости под высоким давлением или вакуумом. В роторных машинах необходимо уплотнение вращающихся валов и роторов; в поршневых машинах — уплотнение возвратно — поступательно движущихся частей.

Разработано большое число разнообразных систем уплотнений. По принципу действия уплотняющие устройства делятся на контактные и бесконтактные. Контактные уплотнения применяются при средних и низких скоростях. Они обеспечивают защиту благодаря плотному контакту деталей в уплотнениях. К ним относят следующие виды уплотнений: манжетные, сальниковые, торцевые по кольцевой поверхности, разрезные пружинные кольца и др.

Бесконтактные уплотнения не имеют контакта между частями уплотнений. Уплотнительный эффект достигается с помощью центробежных сил, гидродинамических явлений и т.д. К ним относятся: щелевые и лабиринтные, осуществляющие защиту благодаря сопротивлению протеканию жидкости или газа через узкие щели; центробежные, основанные на отбрасывании центробежными силами смазки, а также загрязняющих веществ, которые попадают на вращающиеся защитные диски; комбинированные, основанные на двух и более из указанных принципов.

Предметом нашего сегодняшнего рассмотрения будут уплотнительные устройства для герметизации валов машин. На рынке стран СНГ можно приобрести уплотнения фирм Busak&Shamban (Германия) и Simrit (Германия). Отечественные производители также участвуют в конкурентной борьбе на рынке уплотнений. Перечислим их в алфавитном порядке: ООО «Барнаульский завод РТИ» (Россия), ЧП «Кременчугрезинотехника» (Украина), ООО «Резинотехмаш» (Россия) и др. Каталоги и материалы этих производителей использованы при написании настоящей статьи.

Армированные манжеты для валов (рис. 1) стандартизованы. В странах СНГ действует ГОСТ 8752-79. Зарубежные машиностроители используют манжетные уплотнения по стандартам DIN 3760, 3761, а также собственных конструкций фирм-производителей, которые не стандартизованы.

Рис. 1 Элементы манжеты

Стандарты предусматривают различные конструктивные отклонения от описанной конструкции. На рис. 2, а представлены манжеты без защитной кромки (пыльника), а на рис. 2, б — с защитной кромкой (пыльником). При умеренном и среднем загрязнении внешней среды необходимо применять манжеты с защитной кромкой (пыльником). При высокой степени загрязнения применяют кассетные и комбинированные уплотнения. На этом конструктивные разновидности манжет, предусмотренные ГОСТом, заканчиваются, а, следовательно, отечественные производители ограничивают свой ассортимент именно ими.

а) без защитной кромки б) защитной кромкой

Рис. 2 Манжеты без и с защитной кромкой по ГОСТ 8752-79

Статическая часть манжет имеет пять разновидностей, представленных на рис. 3. Манжета с внешней оболочкой из эластомера (рис. 3, а) предназначена для статического уплотнения при разъемных корпусах; при корпусах из легкого материала с высоким коэффициентом теплового расширения; при действии давления; при жидких и газообразных средах. Это наиболее часто встречающийся тип манжеты. Обозначение — тип A по DIN 3760.

а) эластомер б) эластомер с канавками в) металлическая г) металлическая с крышкой д) комбинированная

Рис. 3 Исполнения внешней оболочки

На рис. 3, б представлена манжета с внешней оболочкой из эластомера, на внешней стороне которой нанесены специальные уплотнительные канавки. Данная конструкция облегчает монтаж манжеты; предотвращает выталкивание или перекос уплотнения в посадочном месте корпуса; увеличивает натяг при запрессовке манжеты, что повышает надежность статического уплотнения, прежде всего в корпусах с повышенным тепловым расширением. Обозначение такое же — тип A по DIN 3760. При заказе такой манжеты необходимо дополнительно указать тип оболочки.

На рис. 3, в изображена манжета с металлической внешней оболочкой. Применяются при необходимости особо точной и устойчивой посадки в корпусе, особенно при больших диаметрах. При низковязкой уплотняемой среде, грубой обработке посадочного отверстия, работе под давлением возможна утечка по внешней оболочке. Для предотвращения подобного эффекта применяют специальные уплотнительные пасты. Также ограничено применение в корпусах с высоким коэффициентом теплового расширения или разъемных корпусах. В корпусах из легкого металла существует опасность образования задиров в отверстии. Для защиты от коррозии внешняя металлическая оболочка покрыта антикоррозийной смазкой или тонким слоем канифоли. Обозначение — тип B по DIN 3761.

Манжета типа C по DIN 3761 показана на рис. 3, г. В ее основе лежит предыдущая конструкция. Дополнительно манжета оснащена внутренней металлической крышкой, предающей конструкции большую радиальную жесткость. Применяют такие манжеты при больших диаметрах и грубо обработанных посадочных отверстиях.
На рис. 3, д изображена манжета, обеспечивающая надежное статическое уплотнение благодаря эластомерной части и устойчивую посадку, которая обеспечивается внешней металлической частью поверхности. Такая манжета не стандартизована.

Все перечисленные конструкции манжет имеют исполнения, включающие в себя наличие защитной кромки (пыльника). В обозначении таких манжет в конце добавляется буква S. Например, BS по DIN 3761 (рис. 4, а) или CS по DIN 3761 (рис. 4, б).

а) без защитной кромки б) защитной кромкой

Рис. 4 Манжеты без и с защитной кромкой по DIN 3761

Описанные манжеты предназначены для уплотнения узлов как с минеральными и синтетическими маслами, так и с консистентной смазкой. Как правило, они работоспособны в следующих условиях: максимальное давление уплотняемой среды — до 0,05 МПа (0,5 кг/см2); рабочий диапазон температур составляет от -40?C до +200 ?C (в зависимости от материала); максимальная линейная скорость вала до 10 м/с (в зависимости от материала).

Для установки манжет необходимо выдержать определенные требования к посадочной поверхности вала (рис. 5, а). К ним относятся: посадка — h11, круглость — IT8, шероховатость поверхности шейки — Ra 0,2…0,8 (Rz 1,0…4,0) мкм; твердость поверхности — 45…60 HRC; глубина упрочненного слоя — min 0,3 мм. Для установки манжеты на шейке необходимо предусмотреть заходную фаску или радиус (в зависимости от направления монтажа). Поверхность вала не должна иметь спиральной микроструктуры. Это достигается грамотным выбором технологии обработки. Рекомендуется врезное шлифование с определенными параметрами и упрочняющая обкатка. За дополнительной информацией необходимо обратиться к производителю уплотнений.

Требования к посадочному месту манжеты в корпусе менее жесткие (рис. 5, б). Посадка по H8, шероховатость поверхности Ra 1,6…6,3 (Rz 10…20) мкм.


б) отверстие корпуса

Рис. 5 Требования к шейке вала и отверстию корпуса

Помимо стандартизированных уплотнений, зарубежные производители предлагают ряд уплотнений, удовлетворяющих специальные требования конструктора. На рис. 6 представлены манжеты без браслетной пружины. Они применяются только в узлах, заполненных консистентной смазкой, не подвергающихся воздействию давления и при умеренном или среднем загрязнении внешней среды. Предельная линейная скорость — до 10 м/с.

Преимущества уплотнения: отсутствие пружины снижает трение, а, следовательно, и выделение тепла в узле; снижается износ вала; уменьшаются габариты. Внешняя оболочка имеет те же конструктивные разновидности, что и у стандартизованных манжет. Манжеты на рис. 6, а имеют металлическое армирование и внешнюю оболочку из эластомера; на рис. 6, б внешняя оболочка имеет канавки; на рис. 6, в и г — манжеты с металлической внешней оболочкой.

Рис. 6 Манжеты без браслетной пружины

а) эластомер б) эластомер с канавками в) металлическая г) металлическая

Недостатком описанных конструкций являются неработоспособность в условиях сильного загрязнения внешней среды, а для манжет с браслетной пружиной еще и высокие требования к поверхности вала (твердость и шероховатость). Кроме того, после определенной наработки происходит износ места соприкосновения вала и манжеты, что приводит к неработоспособности узла. В этом случае требуется восстановление или замена вала, стоимость которого может быть весьма существенной. Поэтому были разработаны комбинированные уплотнения, представленные на рис. 7. Уплотнение фирмы Busak&Shamban (рис. 7, а) состоит из двух частей: радиального уплотнения, аналогичного стандартной манжете по DIN 3760(3761) и обрезиненной втулки с дополнительным торцевым уплотнением. Радиальное уплотнение контактирует с шлифованной поверхностью обрезиненной втулки, а кромка пыльника втулки — с металлическим армированием уплотнения. Такая конструкция не требует шлифовки и закалки шейки вала и имеет улучшенную защиту от негативного влияния внешней среды.

На рис. 7, б представлено комбинированное уплотнения фирмы Simrit. Уплотнение состоит из двух элементов — манжеты с двумя уплотняющими кромками и дополнительного пыльника. Эта конструкция предназначена для работы в условиях сильного загрязнения. Оба типа уплотнений работают при указанных выше условиях: давление масла, температура, линейная скорость и т.д.

а) с дополнительной втулкой и пыльником


б) с дополнительной кромкой и пыльником

Рис. 7 Комбинированные манжеты

Дальнейшим развитием концепции комбинированных манжет являются кассетные уплотнения. Эти уплотнения имеют различные конструктивные исполнения. На рис. 8, а — в представлены манжеты фирмы Busak&Shamban, а на рис. 8, г — фирмы Simrit. Эти изделия выполнены в виде единого узла, включающего в себя уплотнительную манжету для масел, контактирующую с ней изнашиваемую втулку и многоступенчатую лабиринтную защиту от внешнего воздействия. Наверное, правильно назвать такую конструкцию «системой уплотнения». Они работают в условиях сильного загрязнения внешней среды, имеют высокую функциональную надежность, длительный срок службы и простотой монтаж.

Конструкцию кассетных уплотнений разберем на примере узла, изображенного на рис. 8, а. Данная кассета предназначена для работы в узле с вращающейся ступицей при стационарной оси. В состав уплотнения входят: армированная манжета специальной конструкции с браслетной пружиной (не вращается); металлический корпус, который запрессовывается в ступицу; внутреннее кольцо.

Металлическое армирование манжеты имеет обрезиненный слой 9 с ребрами, которые соприкасаются с осью. Это обеспечивает легкую посадку на шейку оси и хорошее уплотнение, даже если одно из ребер расположено на дефектном участке поверхности оси. Выступающая кромка 5 контактирует с корпусом и защищает от брызг воды и мелких частиц грязи. Браслетная пружина 10 создает радиальную силу, прижимающую уплотняющую кромку к поверхности внутреннего кольца. Дистанционный прилив 7 гарантирует расположение уплотняющих элементов в правильной позиции.

Корпус кассетного уплотнения устанавливается в ступицу по прессовой посадке и вращается вместе с ней. Посадочную поверхность 2 уплотняет место контакта со ступицей и отводит тепло. Выступающая коническая часть кольца 6 благодаря центробежным силам отбрасывает частицы грязи.
Внутреннее кольцо имеет отражающую поверхность 8, которая защищает уплотняющую кромку манжеты от брызг масла при применении конических роликовых подшипников. Конструкция и обработка контактной поверхности 3 обеспечивает качественное уплотнение и смазку.

Кассета на рис. 8, б предназначена для работы в особо влажных и загрязненных условиях, например, в машинах для обработки рисовых полей. Она имеет дополнительные уплотняющие поверхности, защищающие внутренние полости от воды и грязи. На рис. 8, в изображено кассетное уплотнение для вращающегося вала, аналогичное уплотнению для вращающейся ступицы на рис. 8, а. Инженеры фирмы Simrit разработали кассетное уплотнение для вращающегося вала, представленное на рис. 8, г. Оно имеет несколько отличную от описанной конструкцию, что никоим образом не влияет на ее работоспособность.

Рис. 8 Кассетные уплотнения

а) кассета для ступицы б) кассета для ступицы с доп. защитой в) кассета для вала г) кассета для вала (Simrit)

Для защиты, прежде всего, от внешнего воздействия применяют также торцевые кольца, изображенные на рис. 9. Базовая конструкция (рис. 9, а) состоит из двух частей: металлического корпуса и уплотняющего элемента из эластомера. Кольцо устанавливается на валу с определенным расстоянием от уплотняемой поверхности, которая перпендикулярна оси вала. Например, это может быть торцевая поверхность корпуса подшипникового узла. Уплотняющая кромка при вращении вала трется об эту поверхность с расчетным усилием. Металлический корпус играет роль отбойного кольца, отражая частицы грязи благодаря действию центробежной силы. Она же при увеличении скорости отклоняет от поверхности трения кромку эластомера, уменьшает потери на трение. Конструкция, изображенная на рис. 9, б имеет цилиндрический поясок, входящий в ответную канавку на уплотняемой поверхности (рис. 9, в). Благодаря этому появляется дополнительное лабиринтное уплотнение.

а) базовая конструкция б) с лабиринтным пояском в) установка

Рис. 9 Торцевые кольца

Подобный же принцип для создания защитного эффекта используют V-образные кольца, изображенные на рис. 10. Они используются для предотвращения попадания грязи, пыли, воды или их комбинации и удерживания пластичной смазки. Используются совместно с различными типами подшипников. V-образные кольца имеют несколько видов сечений, различающихся относительной шириной и конусностью.

Рис. 10 V-образное кольцо

Уплотнения торцевого типа могут использоваться в комбинации с армированными манжетами. На рис. 11, а изображено торцевое кольцо, для уплотняющей кромки которого поверхностью трения является армирование манжеты. На рис. 11, б подобным образом работает V-образное кольцо. Такая пара предназначена для работы в сильно загрязненной внешней среде.

а) кольцо с манжетой б) V-образное кольцо с манжетой

Рис. 11 Торцевые уплотнения с манжетами

Для уплотнения опорного узла вала, не выходящего за пределы корпуса, применяют концевые крышки (рис. 12). Крышка представляет собой цилиндрическую пробку с покрытием из эластомера. На рис. 12, а представлены два типа подобных устройств: с внешней оболочкой из эластомера и с комбинированной (эластомер и металл) внешней оболочкой (рис. 12, б).

а) эластомер б) комбинированная (эластомер — металл)

Рис. 12 Уплотняющие крышки

Важнейшим параметром при выборе уплотнения является материал, из которого изготовлена его эластомерная часть. Применяют следующие типы резины: бутадиен-нитрильный каучук (NBR); фторкаучук (FKM); силиконовый каучук (VMQ); гидрированный бутадиен-нитрильный каучук (HNBR); полиакриловый каучук (ACM).

Выбор материала зависит от условий, в которых работает уплотнение. Решающую роль играют ускоренное старение под воздействием высоких температур; потеря эластичности при низкой температуре; механическое стеклование при больших частотах вращения и стойкость к воздействию уплотняемой среды. На рис. 13, а показан приблизительный рабочий температурный диапазон для различных материалов. Диапазон температур, выделенный цветом, требует применения специальных составов указанных материалов. Диаграмма на рис. 13, б позволяет выбрать приблизительную допустимую линейную скорость на кромке манжеты для различных типов материалов.

а) рабочий диапазон температур

б) допустимая линейная скорость для различных материалов

Рис. 13 Условия применения различных материалов

Таблица 1 Материалы манжет

Вид уплотняемой среды Материал уплотнения
NBR FKM ACM VMQ HNBR
Максимально допустимая постоянная температура, °С
Минеральные
жидкости
Двигательные масла 100 170 125 150 130
Трансмиссионные масла 80 150 125 130 110
Гипоидные трансмиссионные масла 80 150 125 110
ATF (автоматическая трансмиссия) масла 100 170 125 130
Гидравлическое масло (DIN 5124) 90 150 120 130
Консистентные смазки 90 100
Трудновоспламеняемые
гидравлические
жидкости
Масляно — водяная эмульсия 70 60 70
Водно — масляная эмульсия 70 60 70
Водный раствор 70 70
Обезвоженная жидкость 150
Другие среды Жидкое топливо 90 100
Вода 90 100 100
Щелочь 90 100 100
Воздух 100 200 150 200 130

Таблица 2 Размеры манжет

Типы манжет
Busak&Shamban (Германия) 4 — 800 8 — 440 4 — 800 8 — 440 8 — 460 12 — 400 20 — 760 35 — 600 15 — 100
Simrit (Германия) 4 — 600 8 — 300 6 — 220 8 — 220 5 — 500 12 — 290 10 — 710 25 — 185 15 — 100

Рис. 14 Ремонтная втулка

Михаил Гранкин, инженер — конструктор
grankin@mail.ru

Все объекты авторского права являются собственностью их владельцев. При подготовке сайта использованы материалы, находящиеся в свободном доступе. Названия фирм-производителей расположены в алфавитном порядке.

Источник

Читайте также:  Что такое просадка гребного вала